-

LM 96
Analogue Watt Meter 90° scale - LM

Applications

The Watt meters, LM96 are offered for the AC systems -single phase
-3 phase balanced load 3 or 4 wire
-3 phase unbalanced load 3 or 4 wire
These instruments are suitable to indicate forward (export / out going) and reverse (import / in coming) power flow. They can be used both on sinusoidal and non - sinusoidal current.
These meters offer several advantages in Switchboard and Generating Set panels. Number of meters can be mounted in a Panel Cut out (Mosaic Mounting).The Bezel, Front window glass and Dial can be easily replaced

Applicable Standards

Nominal case and cutout dimensions forlS 2419
indicating electrical instruments
DIN IEC 61554
Scale and pointer for electrical measuring instruments
Connections and Terminal markings for panel meters
Terminal bolts / leads
Clamp straps for connections
Safety requirements and protective measures for Electrical indicating
instruments and their acessories

Performance specifications for direct acting indicating analogue electrical measuring instruments and their accessories
Front frames for indicating measuring instruments principle dimensions
Technical conditions of delivery for electrical instruments.
UL Combustibility class
Mechanical strength (Free fall test, vibration test)

Environmental conditions
(1) 43802

DIN 43802
IS 1248
DIN 43807
DIN 46200/46282
DIN 46282
IS 9249
DIN 40050
VDE 0110
VDE 0410
IEC 529,IEC 1010
IS 1248
IEC 51/DIN EN 60051
DIN 43701
DIN 43718
DIN 43701
UL 94 V-O
IS 1248, IEC 51
IS 9000
VDE 041
IEC 1010
IS: 1248
IS: 9000
VDE / VDI 3540

Comply with following European directives

2004 / 108 / EC (EMC directive), 2006/95/EC (low voltage directive) \& amendment amendment 93/68/EEC foKE Marking.

Scale and Pointer

Pointer
Pointer deflection
Scale characteristics
Scale division
Scale length
Knife - edge pointer
0 ... 90°
Linear
Coarse-fine
97 mm

Mechanical Data

Case details

Case material

Front facia
Colour of bezel
Position of use
Panel fixing
Mounting
Panel thickness
Terminals

Moulded square case suitable for mounting in Control / Switchgear panels, Machinery consoles.
Polycarbonate,
flame retardant and drip proof as per UL 94 V-0.
Glass
Black
Vertical
Mounting Clamp.
Stackable in a single cutout $>1.5 \mathrm{~mm}$
Hexagon studs, M4 screws and wire clamps E3

Electrical Data

Measured quantity
Response time
Overload capacity
Continuously
Short duration
Power consumption(Approx)
Current path
Voltage path types
E1W, D1W, D1B, V1W, V1B
E1B
D2W, D2B
V3W
V3B
Enclosures code
(IEC 529)
insulation class
Rated insulation voltage
Proof voltage testing
Installation catagory
(IEC 1010)
insulation resistance

Active / Reactive Power 4s max.
(acc to IS:1248/ IEC 51)
1.2 times rated voltage / current

2 times rated voltage, 5 Sec max
10 times rated current, 5 Sec max
≤ 0.2 VA
<3.0 VA
$\leq 3.5 \mathrm{VA}$
$\leq 3.4 \mathrm{VA}$
≤ 3.9 VA
≤ 4.3 VA
IP 52 case
IP 00 for terminals
Group A according to VDE 0110
660 V
2 kV
300 VCAT III
>50 Mohm at 500 V d.c.

Accuracy at Reference Conditions

Accuracy class
1.5 according to IS:1248
(IEC 51/ DIN EN 60051)

Reference conditions

Ambient temperature
Position of use
$23^{\circ} \mathrm{C}+2^{\circ} \mathrm{C}$
Input
Feasibility factor
Power factor
Voltage
Frequency
Current
Nominal position $\pm 1^{0}$
Full-scale power value Pw or Pb
"Lambda"=Pw/Ps or Pb / Ps
Cos $\square=1+0.01$ for Watt meters \&
$\operatorname{Sin} \square=1+0.01$ for Var meters
Rated voltage $+2 \%$
$45-65 \mathrm{~Hz}(50 \mathrm{~Hz}+0.1 \%$ for E1B)
20% to 120% of rated current
IS: 1248 (IEC 51/ DIN EN 60051)
Electrical and mechanical zero point in the meter are not necessarily identical. Zero adjustment should be done only when voltage is applied and current circuit not energised.
Nominal range of use

Ambient temperature
Position of use
Voltage
Power factor
power
Frequency
External magnetic field
$10 \ldots 37^{\circ} \mathrm{C}$
Nominal position +50
Rated voltage $+15 \%$
Cos $\square=1$ to 0.5 (ind.) for active
power
Sin $\Gamma=1$ to 0.5 (ind.) for reactive
$45-65 \mathrm{~Hz}$ ($50 \mathrm{~Hz}+1 \%$ for E 1 B)
At $0.4 \mathrm{kA} / \mathrm{m}$, less than 6% of
fiducial value (not as a
percentage class index)

Environmental Conditions

Climatic suitability

Operating temperature
Storage temperature
Relative humidity
Shock resistance
Vibration resistance
Pollution degree

Climate category II as per IS : 1248 (climatic class 3 according to VDE / VDI 3540)
$-10 \ldots+55^{\circ} \mathrm{C}$
$-25 \ldots .+65^{\circ} \mathrm{C}$
$\leq 75 \%$ annual average, noncondensing
$15 \mathrm{~g}_{\mathrm{n}}$ for pulse duration 11 ms $10-55-10 \mathrm{~Hz}$ for ampli. 0.15 mm (1.5 g at 50 Hz)

2

Options

Case
Front facia Antiglare glass
Colour of bezel
Red index pointer
Position of use
Dial
Blank dial
Special markings
Division dials
Colour markings/bands

Standard Measuring Ranges

Type	Active power	Reactive power
Single phase system 3 phase 3 wire system balanced load	E1W	E1B
3 phase 4 wire system		
balanced load		
3 phase 3 wire system		
unbalanced load		
3 phase 4 wire system		
unbalanced load		

Selection of measuring range

Apparant power Ps is calculated from primary ratings of current transformer and voltage transformer.
In single phase network, Ps = V . I
where $\mathrm{V}=$ voltage between phase and neutral \& $\mathrm{I}=$ line current. In three phase network, Ps $=\overline{3} \vee V$. I
where $\mathrm{V}=$ voltage between two phase \& $\mathrm{I}=$ line current.
Full scale value i.e range of the instrument ($\mathrm{Pw}=$ active power, $\mathrm{Pb}=$ reactive power) must be selected in such a way that the same remain between 0.5 times and 1.2 times the value of apparent power Ps.
Thus feasibility factor "Lambda" should be between 0.3 and 1.5 where "Lambda" = Pw/Ps or Pb/Ps
Full scale values shall preferably be selected from standard series according to DIN 43701, 1-1.2-1.5-2-2.5-3-4-5-6-7.5-8 and their decadic / decimal multiples.

Rated voltage

For Single phase(E1W, E1B) :- 57.7, 63.5, 100, 110, 127, 220, 289, 380.
For Three phase (D1W, D1B, :- 100, 110, 220, 240, 380, 415, D2W, D2B, V1W, V1B, V3W, V3B) 500 .
The voltage will be considered as a phase voltage (between phase an neutral) in case of single phase meters and as a line voltage (between two phases) in case of multi phase (2 wire, 3 wire and 4 wire) meters.

Rated current

1A OR 5 A
If used on current transformer, please state transformer ratio on the order

Safety Precautions

1) Instruments with damaged bezel or glasses must be disconnected from the mains.
2) Adequate safety clearance must be maintained to control panel fasteners and to sheet metal housing. If non insulated connector wires are used.
3) The back cover must be snapped into place after connector wires have been clamped for protection against accidental contact.
4) Bezel, Scale and Glass may only be replaced under voltage free conditions.
5) Instruments to be used in grounded panel.

Specifications are subject to change without notice(02/09)

Functional Principle

For active and reactive power measurement, a moving-coil indicator is used to indicate watts and vars for which an analogue DC signal is obtained from a power converter attached to the case of the indicator.
Schematic diagram

The power converter uses one, two or three for multiplier systems 2 depending on the measurement of balanced or unbalanced load AC systems. Current transformers 1 provide the input current to the multiplier circuit.
The multipliers form the product of the instantaneous values of current and voltage (TDM principle). The product resultant is integrated, thereby suppressing the AC ripple.
Subsequently product proportional output is delivered to 3.There the voltage is converted into Current, whose magnitude also depends on Feasibility Factor (λ).
Finally this current is fed to the moving coil movement, 4.
For the instrument DC power supply is obtained from input voltage, 5 .

Dimensions

Dimensions
(in mm)
Bezel
Case
Depth

Cotout Size

LM 96
96

Depth with
Back cover
$f^{x x} \quad 64$
Weight (approx.)
$0.65-0.75 \mathrm{~kg}$.

Connections

Active Power
Reactive Power
E1W-single phase(one element)E1W-single phase(one element)

D1W-Three phase, three-wire AC supply with balanced load (one element)

V1W-Three phase, four-wire AC supply with balanced load (one element)

D2W-Three phase, three-wire AC supply with unbalanced loadA (two element)

V3W-Three phase, four-wire AC supply with unbalanced load (two element)

V3B-Three phase, four-wire AC supply with unbalanced load (two element)

Ordering Information

Type LM	Watt and Var meter, 90° Scale
Front Dimension 96	$96 \mathrm{~mm} \times 96 \mathrm{~mm}$
Type E1W E1B	Single phase systems
D1W D1B	3 phase 3 wire system balanced load
V1W V1B	3 phase 4 wire system balanced load
D2W D2B	3 phase 3 wire system unbalanced load
V3W V3B	3 phase 4 wire system unbalanced load
Measuring Ranges	Specify while ordering
Rated voltages	Refer to table inside
Rated currents	1A, 5A
Front facia	Normal glass Antiglare glass ${ }^{3}$
Colour of Bezel	Black ${ }^{17}$ Red, Blue, Yellow, White ${ }^{\text {³ }}$
Position of use	Vertical ${ }^{11}$ on request $15 \ldots .165^{\circ 3}$
Dial	Standard scale same as measuring rangë́ Blank dial with division ${ }^{3}$ Additional lettering on request ${ }^{3}$ Additional numbering on request ${ }^{3}$ Coloured marking red or green ${ }^{-3}$ Coloured sector red or green ${ }^{3}$
Logo	ZIMMER

${ }^{4}$ Standard
${ }^{3}$ Please clearly add the desired specifications while ordering
Ordering Example
LM 96 D V3W for active power 3 phase 4 wire system unbalanced load, measuring range $0 \ldots 480 \mathrm{~kW}$, voltage AC 440 V , for use on current transformer 600/5A.

